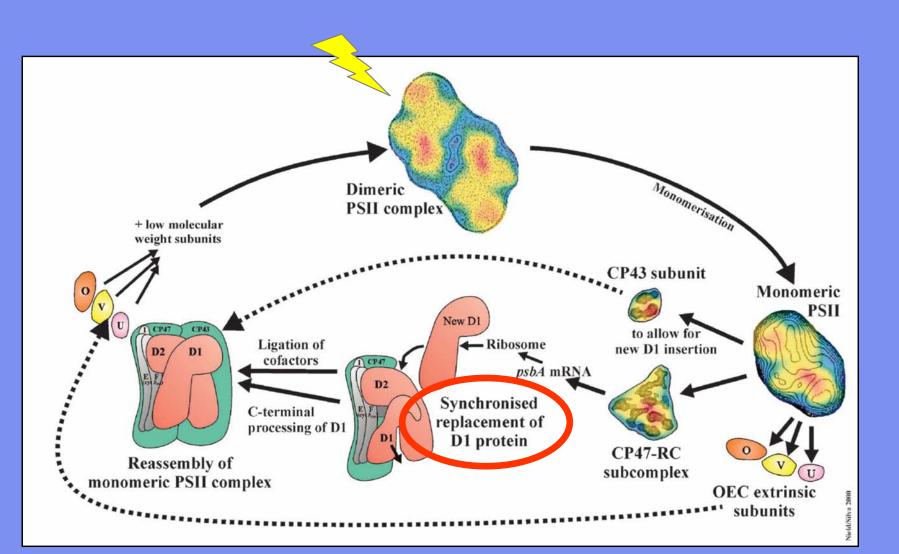
Division of Biology

Imperial College London

The role of prohibitins in *Synechocystis* sp. PCC 6803


Are prohibitins involved in photoprotection?

Marko Boehm Wolfson Biochemistry Building Division of Biology Imperial College London South Kensington campus SW7 2AZ, UK

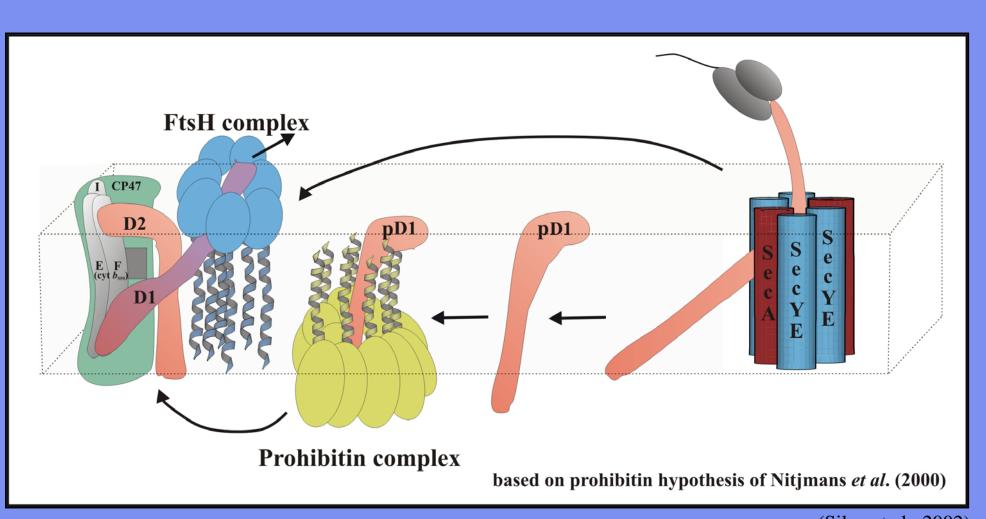
Page 2

The PSII repair cycle

(provided by Paulo Silva and Jon Nield)

Background

➢ In Synechocystis sp. PCC 6803 FtsH has recently been found to be involved in the removal and degradation of damaged D1 protein (Silva et al., 2003).


➢ In S. cerevisiae and E. coli FtsH homologues have been found to be associated with prohibitin homologues (Steglich et al., 1999; Saikawa et al., 2004).

➤ The prohibitin homologues in S. cerevisiae form large, multimeric complexes (Tatsuta et al., 2005).

➤ These complexes have been reported to negatively regulate an FtsH homologue by binding newly synthesised membrane proteins (Nijtmans et al., 2000).

Hypothesis and working model

- for synchronised replacement of the D1 protein -

Aims

➤ Identification of potential prohibitin homologues in Synechocystis sp. PCC 6803 and the thermophilic cyanobacterium Thermosynechococcus elongatus.

> Bioinformatic analysis of the identified cyanobacterial prohibitin homologues.

➤ Identification and characterisation of possible prohibitin complexes in Synechocystis sp. PCC 6803 in vivo.

➤ Generation of prohibitin inactivation mutants in Synechocystis sp. PCC 6803.

> Test the involvement of the prohibitin homologues in the PSII repair cycle.


Prohibitin homologues in cyanobacteria

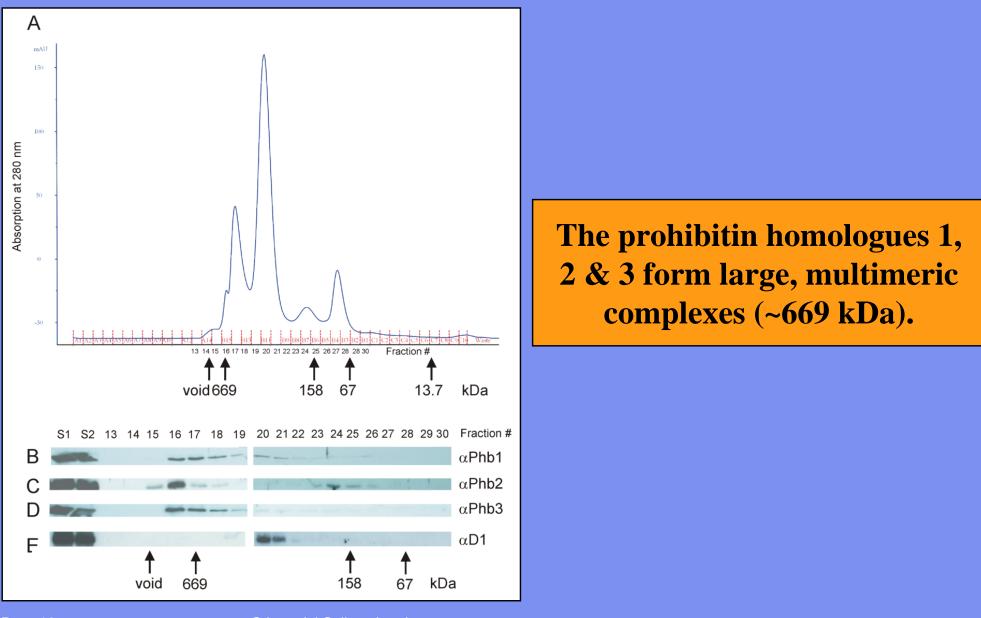
 Prohibitins are members of the Band 7 protein superfamily, that share the SPFH domain as a common motif (Tavernarakis et al., 1999).
(SPFH = stomatin, prohibitin, flotillin and HflK/C).

➤ An Interpro database search identified five Band 7 proteins in Synechocystis sp. PCC 6803 and two in Thermosynechococcus elongatus.

Sy −−−Sy	IPR000163	Prohibitin	=			
UniProt/Swiss- Prot	Phb5	10aa			Band 7 protein	_
UniProt/Swiss- Prot	Phb3	10aa		IPR001972	Stomatin	=
UniProt/TrEMBL	Phb1	10aa				
UniProt/TrEMBL	Phb2	10aa				
UniProt/TrEMBL	Phb4	10aa				
sy – sy						
UniProt/TrEMBL	TE_Phb2	10aa				
UniProt/TrEMBL	TE_Phb1	10aa				

Dendrogram of selected prohibitin homologues

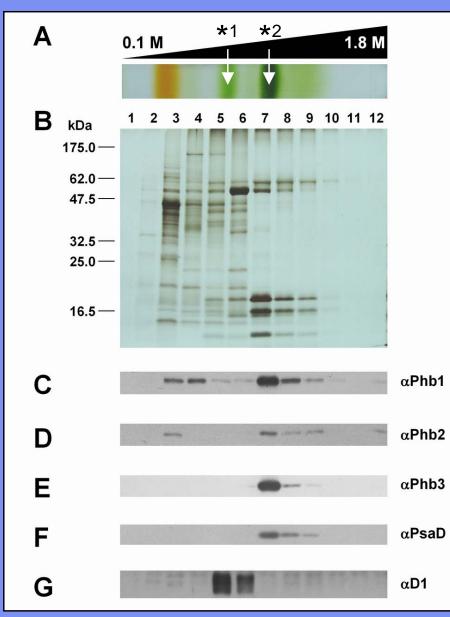
Prohibitin homologue complexes I


Aims:

Identification and characterisation of prohibitin complexes in membrane extracts from *Synechocystis* sp. PCC 6803 wildtype and mutant cells.

Methods:

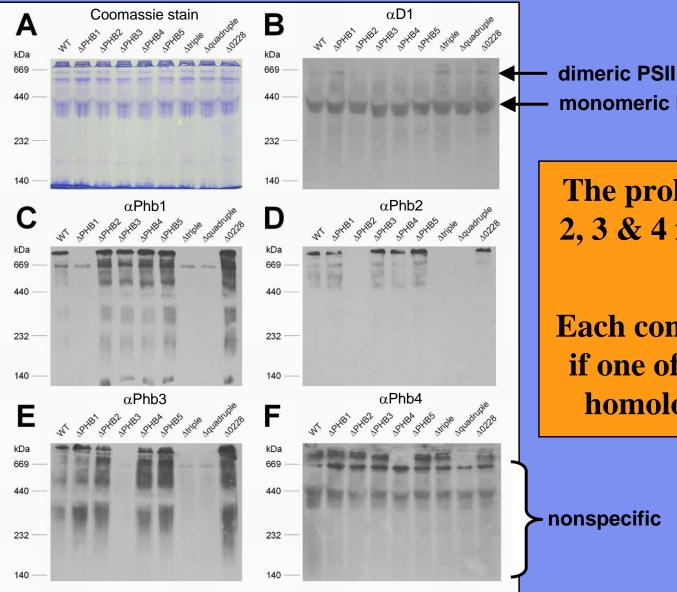
- ≻ Raise polyclonal antibodies against *E. coli* overexpressed proteins.
- ➤ Generate prohibitin inactivation mutants.
- ➢ Separate and identify prohibitin homologue complexes under native conditions by FPLC, BN and sucrose density gradient centrifugation followed by immunoblotting.


Prohibitin homologue complexes II

Page 10

© Imperial College London

Prohibitin homologue complexes III



The prohibitin homologues 1, 2 & 3 form large, multimeric complexes (~900 kDa).

*1 = monomeric PSI and PSII (~300 kDa)*2 = trimeric PSI (~900 kDa)

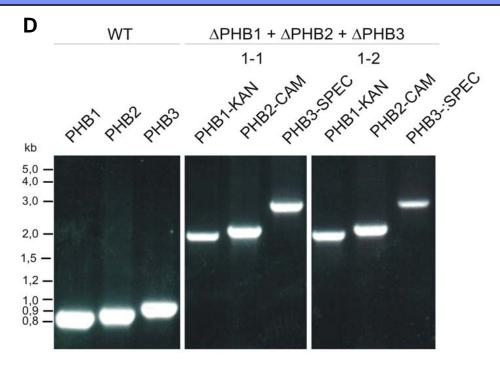
© Imperial College London

Prohibitin homologue complexes IV

monomeric PSII

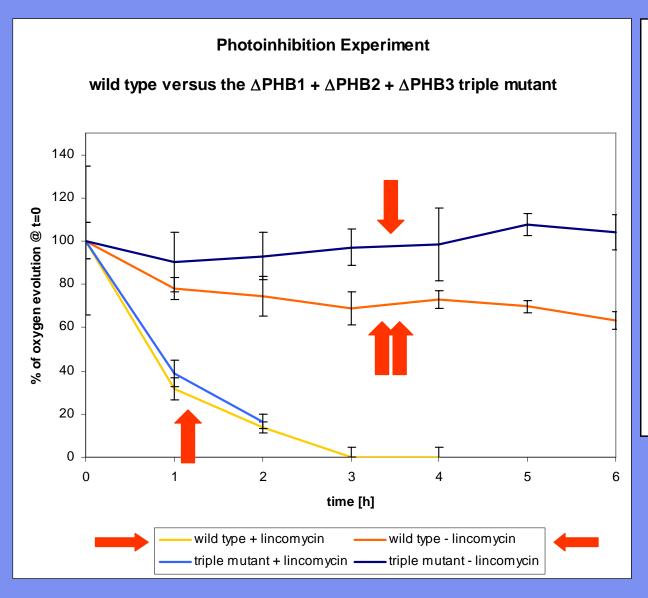
The prohibitin homologues 1, 2, 3 & 4 form large complexes (>669 kDa).

Each complex still forms, even if one of the other prohibitin homologues is inactivated.


nonspecific

© Imperial College London

The prohibitin triple mutant generation


Phb1, Phb2 & Phb3 were insertionally inactivated by transforming *Synechocystis* sp. PCC 6803 with recombinant DNA constructs.

PCR analysis of wildtype and mutant strains

Photoinhibition experiment

<u>Aim:</u>

Test if prohibitins are involved in the PSII repair cycle.

➢ Wildtype cells maintain PSII activity (oxygen evolution).

➢ PSII activity decreases in wildtype cells in the presence of a protein synthesis inhibitor.

≻The triple mutant acts similar to wildtype cells.

PSII repair cycle is not impaired in the triple mutant!

Pulse-chase experiment

	wil	d type		∆Phb1 + ∆Phb2 + ∆Phb3 triple mutant			
0′	45´	90 <i>′</i>	180´	0′	45´	90´	180´
				-	-		

Aim:

Monitor selective D1 protein turnover in wildtype and mutant *Synechocystis* sp. PCC 6803 cells.

➤ The initial D1 protein labeling appears to be higher in the triple mutant.

Nevertheless the rate of D1 protein degradation is similar in wildtype and mutant cells.

> Similar rate of D1 protein turnover in the triple mutant!

Conclusions

✓ Five prohibitin homologues were identified in *Synechocystis* sp. PCC 6803 and two in *Thermosynechococcus elongatus*.

✓ Cyanobacterial prohibitin homologues are only distantly related to other known, eukaryotic prohibitin homologues.

✓ The prohibitin homologues Phb1, Phb2, Phb3 and Phb4 form large and possibly homomultimeric protein complexes.

✓ The prohibitin homologues Phb1, 2, 3, 4 & 5 are not essential for cell viability under laboratory growth conditions.

✓ The prohibitin homologues Phb1, Phb2 and Phb3 seem not to be involved in the PSII repair cycle or affect the rate of D1 protein turnover under the conditions tested.

Future work

Elucidating the physiological relevance of the prohibitins in Synechocystis sp. PCC 6803 by growing the generated mutants under various stress conditions.

> Further characterisation of the prohibitin homologues and their respective complexes.

• Purification of the prohibitins to analyse possible interaction partners (pD1?).

• Single particle analysis on purified prohibitin complexes.

Aknowledgements

Prof. Peter Nixon Myles Barker Remco de Vries Franck Michoux

Dr. Bart Feyes (Imperial College London)

Dr. Huw Williams (Imperial College London)